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ABSTRACT

A recent reduction in the time to market has led to the de-
velopment of a new approach to IP-based design in which
a highly parametric pre-designed system-on-a-chip is con-
figured according to the application it will have to execute.
The greatest problems in this area regard exploration of the
range of possible system configurations in search of the op-
timal configuration for a given system. There are, in fact, a
number of parameters involved (bus sizes, cache configura-
tions, software algorithms, etc.), each of which has a great
impact on design constraints such as area, power and per-
formance. An exhaustive analysis of all possible configura-
tions is thus computationally unfeasible. In this paper we
propose using genetic algorithms to determine the optimal
configuration for a highly parametric system. The approach
is applied to the search for the optimal configuration (in
terms of area, power and mean access time) of a memory
hierarchy involved in a given application.
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1. INTRODUCTION

A reduction in the time to market has led to the definition
of a new approach to IP-based design called configure-and-
ezecute [23]. It is based on the presence of highly parametric
IPs (Intellectual Properties) representing the basic compo-
nents of a SoC (System-on-a-Chip). Once the architecture

of a system has been designed, that is, it has been decided

which IPs to use, it is necessary to find the optimal configu-
ration for them according to the specific application (or set
of applications) that have to be executed. The chosen val-
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ues for these parameters (bus sizes, coding teqniques, cache
parameters, arbitration schemes, etc.) are the ones that op-
timise a function that almost always depends on three main
variables: area, power and performance.

There are two main problems to be dealt with here. The
first one regards the definition of the function to be opt-
mised, the second point is which strategy to use in the search
for the optimal parameter configuration. Evaluation of the
objective function for a given configuration requires simula-
tion of a system model, which may be of a varying degree
of computational complexity according to the level of de-
tail required. Fortunately there has recently been a spread
in the use of general-purpose programming languages in sys-
tem modelling (especially C/C++) to obtain what are called
executable specifications [22]. One of the main advantages of
this approach is that it provides a model of the whole system
right from the earliest design stages. This enables the de-
signer to simulate the whole system much faster than would
be possible with a description in HDL (VHDL or Verilog)
because it works at a higher level of abstraction. In addition,
the opportunity to integrate a high-level model with estima-
tion engines provides information about variables (e.g. area,
power etc.), typically obtained at a lower level, with a suffi-
cient degree of accuracy {14].

These models, which are designed to be highly parametric,
can be used to simulate a very large number of possible con-
figurations [13]. Unfortunately, the vast range of configura-
tions often makes an exhaustive search for the optimal con-
figuration computationally unfeasible [12]. In [7] a hybrid
approach using evolutionary algorithms and heuristic tech-
niques was used to optimise the mapping of an algorithm-
level specification onto a heterogeneous hardware/software
architecture. This approach, which follows the describe-and-
synthesize design paradigm, is different from the one we in-
tend to follow, known as configure-and-ezecute, the advan-
tages of which are fully discussed in [23].

In this paper we present a strategy to search for the opti-
mal configuration of a parameterisable system using genetic
algorithms. The definition of new methods is, in fact, of fun-
damental importance, above all in the field of SoCs, where
the same application is executed throughout the system’s
lifetime. As a case study we will use the optimisation, in
terms of area, power consumption and performance, of a
memory hierarchy.
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Figure 1: Reference architecture.

The paper is structured as follows. Section 2 describes the
parametric reference architecture and the estimation flow
of the variables to be optimised. Section 3 highlights the
necessity to find a trade-off function. Section 4 presents our
proposal to apply genetic algorithms to an efficient search for
the optimal configuration. Section 5 presents a case study.
Finally, Section 6 provides our conclusions and indications
as to future developments.

2. REFERENCE ARCHITECURE

Figure 1 shows the architecture to which reference will
be made. It consists of a memory hierarchy in which the
first two levels are on-chip [3] and the third is the external
memory. The first-level cache is separate for instructions
and data, while the second-level is unified. The parts of
the graph crossed by an arrow represent the parametric ele-
ments and are the caches and data buses. The caches can be
configured in relation to size, block size, associativity, the re-
placement policy (Iru, fifo, random) and, in the case of data
caches, the writing policy (write through, write back) and
the way writing misses are handled (write allocate, no-write
allocate). The data buses can be configured in terms of the
number of lines.

Henceforward the term memory hierarchy configuration
(MH) will be taken to mean the set of cache (C) and bus
(B) configurations.

MH = {C, B}

By cache configurations we mean the configuration of the
first-level instruction cache (Crri1), the first-level data cache
(Cp11) and the unified second-level cache (Cyrsz).

C = {Cr11,Cp11,Cur2}

By cache configuration we mean the following set of param-
eters: cache size (S), block size (BS), associativity (A4), re-
placement policy (RP) and, in the case of data caches, the
writing policy (W P) and writing misses policy (W MP).

Cre1 = {Srr1, BSi11, Arr1, RPri1}

Cpr1 = {Spr1,BSpr1,ApL1, RPpL1,W PpLi, WMPp11}
Cui2 = {Sur2, BSur2, Aurs, RPyL2, W PyL2, WM Py1»}
By bus configurations we mean the size of the bus between

the first and second levels (BL1«r2) and between the second
level and the external memory (Braw En).

B = {Briw12, Branem}

The decision to focus on a subset of a complex system
(i.e. only the memory hierarchy) is accounted for by the
strength of the impact of its configuration, in terms of area,
performance and power consumption.

The impact on area is considerable as a consistent portion
of silicon is devoted to the caches and their control logic (see
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Figure 2: Estimation flow.

the photos of the dies of current processors in which 15%-
40% of the die area is occupied by the cache [1]).

The overall performance of a system greatly depends on
the memory hierarchy which exploits the principle of refer-
ence locations to hide the latency of a slow memory from the
processor [16]. As the memory is accessed each clock cycle
(to fetch instructions) and the most frequent operations are
load/store, the impact of the configuration of the memory
hierarchy on performance is immediately abvious {17, 10].

Power dissipation also depends on the memory hierar-
chy [4]. The amount of energy spent on communications
between the processor and the memory is known to represent
a significant portion of the total absorption (in fact infor-
mation coding techniques have been defined to minimise the
activity induced by data on high-capacitance buses [18]). A
well-designed memory hierarchy limits data traffic on buses
outside the chip (and thus of high capacitance), thus reduc-
ing the total amount of power absorbed.

2.1 Estimation Flow

Figure 2 shows the structure of the estimation frame-
work used. The input is represented by the configuration of
the memory hierarchy, specification of the technology used
(there are two: .35psm and .80um) and a memory reference
trace file. The output is an estimate of the amount of area
occupied by the memory hierarchy, the average memory ac-
cess time for the processor and the total switching capaci-
tance. The average length of time required for the processor
to access the memory will be the yardstick whereby we will
measure performance: the shorter it is the better the perfor-
mance of the system will be. The total switching capacitance
will be the yardstick used to measure power consumption,
to which it is proportional.

The memory reference trace files used contain 1,000,000
references for each benchmark in the SPEC92 suite [2] and
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were generated on an MIPS architecture. Each benchmark,
together with the configuration of the memory hierarchy,
represents the input to the cache simulator Dinero (6] which
enables us to determine the number of accesses and misses
for each cache and the total number of bytes transferred
from one level in the hierarchy to the next.

Having established the configuration of a cache and the
technology, we used CACTY [20] to estimate the access time
and the switching capacitance per access. To estimate the
area we used the model proposed in [19] which gives the area
occupied in terms of register bit equivalent (rbe). To convert
from rbe to mm? we used the data in [9].

The capacitance of each line of the bus connecting the
first level to the second depends on the number of lines.
The area required for bus routing was taken as fixed. If the
length is the same, the capacitance of a line of a bus whose
width is n will be lower than that of a bus whose width
i8 m > n, as they will be closer and so the effects of the
coupling capacitance will be greater [12]. To determine the
capacitance of a line of a bus of a certain size we used the
equation defined in {11]. To determine the bus’s switching
capacitance random traffic was considered.

To determine the average access time (AAT') required for
the processor to access the memory, we used the classic se-
quential forward model. The data item required by the pro-
cessor is sought in the first level. If it is not found (miss)
it is sought in the second level and so on until it is found
(hit). At this point the data is transported back through
the hierarchy and delivered to the processor. If the memory
hierarchy has NV levels we have:

AAT =AT\ + MR, - (HRy - MP; +
+MR3~(...+MRN—1~MPN)...) 1)

where AT is the access time for the first-level cache (i.e. the
one directly connected to the processor). MR, is the local
miss rate for level n , i.e. the ratio between the number of
misses at level n and the total number of accesses at that
level. HR,, is the local hit rate for level n (HR, = 1-MR,).
MP, is the time required to transport the data required
from level n to level 1: )

o 2 BSi—1 x 8
MP, = ZTT; =y (An-—b;l‘:‘:-—) =MP,_, +TT,
i=n i=n

- where T'T; is the time required to transfer a block from level

i to level i — 1, which obviously depends on the number of

lines for the bus connecting level ¢ and level ¢ — 1. AT is the

access time for the cache at level i. BS; is the size of the

block (in bytes) for the cache at level i. BL; is the number

of lines for the bus connecting level i to level i + 1.
Applying equation 1 to our reference architecture, we

have:

AATinet = ATin + MRy - HRy13 - MPuia +
+ MR, - MRyi2 - MPpn
AAT4ata = ATans + MRain - HRyi3 - MPyia +
+ MRy - MRyi2 - M Py,
which respectively represent the average access times re-
quired for the CPU to access the instructions and data
caches. The average access time used to measure perfor-

mance was calculated as the average of AAT}n,; and AAT 450
weighted by the number of accesses to the instructions and
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Figure 3: Normalised values of area, power and av-
erage access time with various cache size.

data caches respectively.
- AATinet X AcCinst + AATdate X ACCdata
AcCinst + AcCdata

3. TRADE-OFFS

In this section we will describe the effects of varying the
configuration of the memory hierarchy on area, performance
and power consumption. Figure 3 shows the normalised
trends for area, total switching capacitance and average ac-
cess time with various cache sizes. In each configuration
the first-level caches are of the same size while the second-
level cache is 4 times the size of the first-level one. The
trend followed by the area is a predictable one: as the cache
size increases, so does the area. The total switching capac-
itance takes a less obvious trend: it is maximum with the
first configuration, then decreases down to the configura-
tion 8K/8K/32K and then starts to increase again. This
behaviour can be accounted for by the fact that in the con-
figurations before 8K/8K/32K the first-level cache is un-
able to capture the working-set of the benchmark, caus-
ing an excessive number of accesses to the next levels and
thus greater power consumption. With the configurations
after 8K/8K/32K, even though the first-level caches cap-
ture almost all the CPU accesses, as they are of a large
size they consume more power. The average access time
decreases rapidly up to the configuration 4K/4K /16K, then
slows down as far as 32K /32K /128K and then starts to grow
again, This can be accounted for as follows: as the size of
the caches increases, there is on the one hand a loss due to
an increase in the latency for the first-level caches, and on
the other a gain because there are fewer accesses to the next
levels which feature much greater latency.

The choice of the configuration for the memory hierar-
chy depends on the objective to be optimised. To sum up,
three different configurations optimising three different ob-
Jjectives were found: if the optimisation is to be in terms
of area, the configuration to choose is 128/128/512; if only
power consumption is of interest then the optimal choice is
8K/8K/32K; if, on the other hand, the aim is to optimise
performance, then the best configuration is 32K /32K /128K.
As said previously, at times it is desirable to optimise in
more than one direction. The design objectives often re-
quire the optimisation of several contrasting variables: an

AAT
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enhancement of one means a deterioration of another and
vice versa. As can be seen (Fig. 3), in fact, performance im-
provements lead to an increase in area and power consump-
tion. For this reason the choose of a configuration requires
definition of a trade-off function.

4. METHODOLOGY PROPOSED

An exhaustive search for the optimal configuration of a
parameterisable system is computationally unfeasible, We
can take our reference architecture as an example and cal-
culate the range of possible configurations. Let us assume
that the range of variation for the parameters involved is as
follows:

Srr1,Spr1 € {128,256,512,1K, 2K, 4K, 8K, 16K, 32K}

Sviz € {1K,2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K,

512K, 1M,2M}

BSi11,BSpr € {8,16,32}

BSy13 € {8,16,32, 64,128}

AlLl; ADLI € {1, 21 4) 8}

Ayis € {1,2,4,8,16}

RPrpy, RPory, RPyta € {Iru, fifo,random}

Briarz € {32,64,128, 256}

If we exclude inadmissible configurations (first-level cache/block

size greater than second-level), the number of possible con-
figurations is 213,062,400. In our analysis flow, analysis of a
configuration with a benchmark of 1,000,000 references re-
quires about 1 sec. on a 450MHz UltraSparcll workstation.
Once the benchmark is set, an exhaustive search for the best
configuration would take nearly 7 years' simulation!.

In this section we will propose a methodology for explor-
ing the range of configurations using genetic algorithms. Ge-
netic algorithms make it possible to find solutions to prob-
lems for which the solution method is unknown: it is suffi-
cient to define a fitness function (in our case the cost function
to be minimised) and leave the algorithm to converge on the
optimal configuration.

The tool based on genetic search techniques we used was
GENESIS [15]. The genome of each individual in the pop-
ulation represents a possible configuration. In our case it is
a 34-bit structure: the sub-strings it comprises encode the
parameters of our reference architecture. The following data
was used for each optimisation: a population of 50 individu-
als, a total of 4000 tests, a crossover probability of 60% and
a mutation probability of 0.1%. The fitness function was a
cost function (to be minimised) — A x P x AAT for that
configuration. Impossible configurations were excluded by
using the approach classified in [5] as rejection of infeasible
individuals.

Figure 4 shows the convergence of the GA (each point
of the P-AAT plane is normalised to 1). As can be seen,
the points are initially scattered over the range of solutions
(initial population) and with the evolution of the species
they get closer and closer towards the optimal solution, i.e.
the one that is closest to the origin. The average number
of simulated configurations is about 4000; therefore the en-
tire optimization procedure requires CPU times less than
two hours. Figure 5 shows the normalised trends of online
performance (average of the results obtained in all the eval-
uations), offline performance (average of the best results),

~~= online performance
- ==+ offiine performance
~—  besi evaluation

L

Figure 5: Online/offline performance and best result
at different age.

and the best result. The curves give an idea of the conver-
gence: a configuration that is very close to the optimal one

. is reached as early as the 10th period; afterwards, in fact,

the improvements obtained are of less than 5%.

In general the problem of optimising several objectives at
the same time does not have a single, perfect solution but
a set of alternative and equally efficient solutions known
as a Pareto-optimal set [8]. A more formal definition of a
Pareto-optimal set is as follows: let us consider the min-
imisation of a function of n variables f(fi(x),..., fa(x))
in the universe . A decision vector x € U/ is said to be
Pareto-optimal if and only if there is no y € W for which
b =f£(fi(¥),-.. , fa(y)) dominates @ = £(f1(x), ... , fa(x)),
i.e., there is no y € U such that:

Vie{l,...,n},a: <b; A Fi€{y,...

For each application the search of the optimal configuration
is made up of the following steps: (1) definition of the cost
function to be optimised, (2) GAs applications and extrac-
tion of the Pareto-optimal set (P), (3) choice of a configu-
ration from P. By configuration we mean the configuration
of the caches (in the form S/BS/A/RP) and the size of
the bus between the first and second levels in the hierar-
chy (obviously the replacement policy is independent if the

n}|a;i <b;
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Figure 6: Optimization results summary.

associativity is 1).

5. CASE STUDY

Table 1 shows the configurations that minimise the cost
A x P x AAT for various applications. From analysis of
the data it emerges that the optimal configuration greatly
depends on the benchmark. More specifically, for all the
benchmarks in the suite the average cache size is a first-
level cache of 512 bytes for instructions, 256 bytes for data
and 4K bytes for the single second-level cache. Such low
values can be accounted for by the way the cost function
was defined. As the size of the caches grows, the increase
in area is higher than any reduction in the amount of power
consumed per access and the average access time obtained
with the fewer accesses to the higher levels in the hierarchy.
Excluding the factor A from the cost function or adding a
constraint on the area, the average cache sizes increase. The
minimisation P x AAT gives an average instructions cache of
1KB, a data cache of 2KB and a second-level cache of 64KB.
The average configuration needed to maximise performance
is an instructions cache of 2KB, a data cache of 512 bytes
and a second-level cache of 64K bytes. If the objective is to
minimise power consumption, taking the workload offered
by the SPECS2 suite as a reference, one needs an instruc-
tions cache of 512 bytes, a data cache of 1K bytes and a
second-level cache of 16K bytes. Figure 6 summarises the
results obtained for each type of optimisation performed,
giving the normalised values for area, power and average
access time averaged out over all the benchmarks.

Because evolutionary algorithms require scalar fitness in-
formation to work on, a scalarization of the objective vec-
tors is always necessary. For this reason objectives are often
artificially combined into a scalar function. Other optimisa~
tion techniques were also applied, such as the compromise
programming [21] that aim to minimise the distance, not in
geometric sense but in a preferential one, between a certain
point and the actual achievement for each of several objec~
tives under consideration. This point is an ideal point (nor-
mally infeasible) which corresponds to the optimum value of
each objective. The solutions we found using this approach
don’t dominate the one we obtained using the previous cost
function.

6. CONCLUSIONS

In this paper we have proposed using genetic algorithms
to explore the range of configurations for a parameterisable
system. The approach is an optimal one as the range of
possible configurations is so great that an exhaustive search
would be unfeasible. Using the genetic approach, it is pos-
sible to conduct an intelligent search for the configuration
that minimises a given cost function. The approach is a
completely general one. In this paper it has been applied to
the search for the optimal configuration of a memory hierar-
chy that minimises a cost function depending on three vari-
ables area, power consumption, and average access time.
Application of the method to a complex system in which
there are several free parameters does not complicate mat~
ters: the only thing that needs defining is the cost function
to be minimised and the coding of the genome.

From the results obtained it was observed that the optimal
configuration depends heavily on the benchmark used. For
this reason, the configuration of an embedded system, the
functions of which are implemented by the software, can be
chosen according to the code executed.

Future developments will concern two interdependent points.
The first is application of the methodology to complex sys-
tems (System-On-Chip) with a large number of free param-
eters and consequently a vast range of possible configura-
tions. The second is the addition of a heuristic to make the
genetic algorithm more intelligent and exploit knowledge of
the system being examined.
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